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Evolutionary Operators

We will study basic building blocks of evolutionary dynamics: Reproduction, Selection and
Mutation

▶ they represent the fundamental and defining principles of biological systems
▶ Reproduction: allows a species to pass on its offspring
▶ Selection: allows species to compete with each other, e.g. one reproduces faster than the other
▶ mutation: species ’transform’ into other.

▶ Combination of them allows us to create different evolutionary dynamics
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Reproduction

Let’s imagine a single bacterial cell in a perfect enviroment containing all the nutrients required
for it to survive, and reproduce.
▶ Suppose the bacteria divides into two every 20 minutes
▶ Then after 20 minutes we will have 2 bacteria
▶ after 40 we will have 4
▶ after 60 we weill have 8
▶ in general, after 20t minutes, we will have 2t bacteria

Mathematically, we can denote by xt the number of cells in the enviroment after 20t minutes.
Then we have the following difference equation

xt+1 = 2xt t ∈ {0, 1, 2, . . . , }

Difference equation for reproduction only

The solution for this difference equation is given by

xt = x02t t ∈ {0, 1, 2, . . . , }

whete x0 is the initial number of cells.

Discrete-time exponential growth
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xt = x02t t ∈ {0, 1, 2, . . . , }

whete x0 is the initial number of cells.

Discrete-time exponential growth

In our case x0 = 1 since we have one bacterium
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This is the famous exponential growth.
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Reproduction

So far so good...

However, instead of thinking about reproduction over epochs, it is more convenient to think about
reproduction rates.

There are many reasons
1. Solving difference equations is hard
2. Modelling with difference equations is hard
3. understanding difference equations, without solving them, is hard

On the other hand, working with rates lead to differential equations. These has been used for
many years in phisical modelling, and we understand them much better than difference equations
as they tend to be easier to solve and study.

In some sense, we want to do classical mechanics in biology, but instead of spheres and cars
with mass, we have biological entities
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Reproduction in continuous time

Consider again our population of cells, but this time x(t) denotes the mechanisc of cells at time t ,
with t ∈ [0, ∞).
▶ We consider continuous time t

▶ t can be measure in seconds, minutes, hours, days, it doesn’t matter, but we need to be
clear about it in order to make sense of the numbers

▶ x(t) will also be continuous, meaning that it can take value 1.2 or π,
▶ It is ok to think that x(t) is the number of cells, but probably it is more convenient to use a

continuous measure, such as
1. weight (biomass)
2. volume
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A continuous-time model for Reproduction

▶ Let x(t) denotes the number of cells at time t for times t ∈ [0, ∞).

▶ and suppose that cells divide into two at rate r
▶ rate is the equivalent to velocity in classical mechanics
▶ Then, the dynamics satisfies

d
dt

x(t) = rx(t), t > 0

which is usually written by
ẋ(t) = rx(t), t > 0

or even shorter
ẋ = rx

Differential Equation for reproduction only

The solution of this differential equation is

x(t) = x0er t

Continuous-time exponential growth
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ẋ(t) = rx(t), t > 0

or even shorter
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x(t) = x(0)er t

Continuous-time exponential growth
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In the pictures we have x(0) = 1 and r = 2.
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Reproduction and Death

▶ Let x(t) denotes the abundance of cells at time t
▶ Birth: cells divides at rate r
▶ Death: cells die at rate d
▶ the dynamics satisfy the equation

ẋ(t) = (r − d)x(t) t > 0,

which solution is given by

x(t) = x0e(r−d)t

Simple birth-and-death equation
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ẋ(t) = (r − d)x(t) t > 0,

which solution is given by

x(t) = x0e(r−d)t

Simple birth-and-death equation

Kerlyns Martínez - Nicolás Rivera Escuela de Bioestocástica January 22, 2024 8 / 14



A continuous-time model

x(t) = x0e(r−d)t

Simple birth-and-death equation

Here we have three behaviours

1. r > d , then the population size grows to infinity

2. r < d , then the population size tends to 0

3. r = d , the population size remains fixed. Note, however, that a minimal change in r and d
will change the behaviour of the dynamic.
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A continuous-time model: size-dependent effects

We can make our model a bit more complex
▶ Birth: cells divides at rate r
▶ Death: cells die at rate x · d when the abundance is x

▶ In this model the more cells we have, the faster they die: e.g. they are competing for
nutrients, space, or just fight

▶ In this case, the dynamics satisfies the equation

ẋ(t) = (r − d · x(t))x(t) t > 0,

which is commonly written as

ẋ(t) = rx(t)(1 − x(t)/K )

where K = r/d .

Logistic equation

whose solution is

x(t) =
Kx0ert

K + x0(ert − 1)

Logistic function
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x(t) =
Kx0ert

K + x0(ert − 1)

Logistic function
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Example with K = 2 and r = 1
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Writing models

We have seen so far a few equations, but how do we come up with equations ourselves?

To write our own model, we need to be willing to

1. write equations that roughly explain the situation

2. make concessions
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Writing models

Exercise: Imagine a bird population on an isolated island. Birds reproduce at rate 3 per year,
and they die at rate 1 every 10 years. Unfortunately, these Birds attack each other: in particular,
each pairs of birds fight at rate 1 every three months. The outcome of the fight is that 0.1% of the
time both die, 0.1% only one dies, and the rest of the time both survive.

1. We measure time in years
2. x(t) denotes the number of birds
3. x(0) is not given
4. we model ẋ
5. reproduction add 3x to the derivative
6. the dead rate is 0.1 per year, so it adds −0.1x to the derivative
7. fights are a bit hard but the number of pairs is (roughly)x2/2, the fighting rate is 4 per year,

the average outcome of the fight is an average of 3
1000 dead birds. Therefore, due to fights

we add the term − x2

2 · 4 · 3
1000

8. Finally

ẋ = 2.9x − 6
1000

x2 = x (2.9 − 0.006x)

= rx
(
1 − x/K

)
with r = 2.9 and K = 2.9

0.006 ≈ 483.333.
9. We recognise a logistic function, so for large times t we have a population of 483 birds,

approximately.
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ẋ = 2.9x − 6
1000

x2 = x (2.9 − 0.006x)

= rx
(
1 − x/K

)
with r = 2.9 and K = 2.9

0.006 ≈ 483.333.
9. We recognise a logistic function, so for large times t we have a population of 483 birds,

approximately.

Kerlyns Martínez - Nicolás Rivera Escuela de Bioestocástica January 22, 2024 13 / 14



Writing models

Exercise: Imagine a bird population on an isolated island. Birds reproduce at rate 3 per year,
and they die at rate 1 every 10 years. Unfortunately, these Birds attack each other: in particular,
each pairs of birds fight at rate 1 every three months. The outcome of the fight is that 0.1% of the
time both die, 0.1% only one dies, and the rest of the time both survive.

1. We measure time in years
2. x(t) denotes the number of birds
3. x(0) is not given
4. we model ẋ
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1000 dead birds. Therefore, due to fights

we add the term − x2

2 · 4 · 3
1000

8. Finally

ẋ = 2.9x − 6
1000

x2 = x (2.9 − 0.006x)

= rx
(
1 − x/K

)
with r = 2.9 and K = 2.9

0.006 ≈ 483.333.
9. We recognise a logistic function, so for large times t we have a population of 483 birds,

approximately.
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Writing models

Our logistic function with r = 2.9 and K ≈ 483.333 looks like
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